A $$C^{m,\omega }$$ Whitney Extension Theorem for Horizontal Curves in the Heisenberg Group

نویسندگان

چکیده

The sub-Riemannian Heisenberg group is the simplest nonabelian example of a Carnot group. Suppose $$(\gamma _k)_{0 \le k m}$$ collection continuous function defined on compact set $$K \subset \mathbb {R}$$ taking values in When there horizontal $$C^{m}$$ curve $$\Gamma $$ so that $$D^k \Gamma |_K = \gamma _k$$ for $$k 0, 1,\dots ,m$$ ? Such extensions are known as “Whitney extensions” due to original work Whitney real valued mappings. This question was answered by authors together with Andrea Pinamonti. addition $$\gamma _m$$ uniformly modulus continuity $$\omega . When, then, $$C^{m,\omega }$$ In this paper, we show hypotheses previous $$C^m$$ extension result not sufficient case, and provide new assumptions which necessary guarantee existence such an extension.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extension of a theorem of Whitney

It is shown that every planar graph with no separating triangles is a subgraph of a Hamiltonian planar graph; that is, Whitney’s theorem holds without the assumption of a triangulation.

متن کامل

S Theorem for the Heisenberg Group

If an integrable function f on the Heisenberg group is supported on the set B × R where B ⊂ Cn is compact and the group Fourier transform f̂(λ) is a finite rank operator for all λ ∈ R \ {0}, then f ≡ 0.

متن کامل

Benedicks’ Theorem for the Heisenberg Group

If an integrable function f on the Heisenberg group is supported on the set B × R where B ⊂ Cn is compact and the group Fourier transform f̂(λ) is a finite rank operator for all λ ∈ R \ {0}, then f ≡ 0.

متن کامل

The Heisenberg group and Pansu’s Theorem

The goal of these notes is to introduce the reader to the Heisenberg group with its CarnotCarathéodory metric and to Pansu’s differentiation theorem. As they are very similar, we will first study Rademacher’s theorem about Lipschitz maps and then see how the same technique can be applied in the more complex setting of the Heisenberg group.

متن کامل

Vertical versus Horizontal Poincaré Inequalities on the Heisenberg Group

Let H = 〈a, b | a[a, b] = [a, b]a ∧ b[a, b] = [a, b]b〉 be the discrete Heisenberg group, equipped with the left-invariant word metric dW (·, ·) associated to the generating set {a, b, a−1, b−1}. Letting Bn = {x ∈ H : dW (x, eH) 6 n} denote the corresponding closed ball of radius n ∈ N, and writing c = [a, b] = aba−1b−1, we prove that if (X, ‖·‖X) is a Banach space whose modulus of uniform conve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Geometric Analysis

سال: 2023

ISSN: ['1559-002X', '1050-6926']

DOI: https://doi.org/10.1007/s12220-023-01233-w